

KIT-Zentrum Elementarteilchen- und Astroteilchenphysik (KCETA)

ISAPP Summer Institute 2009 at the Karlsruhe Institute of Technology

Direct Dark Matter search with cryogenic bolometers

- ➢galactic DM halo models
- WIMP detection strategies
- direct DM search
 - detection schemes
 - DM search using cryogenic bolometers:
 - o ionisation & heat
 - o scintillation & heat

>where do we stand? what to come next?

galactic DM halo models

$$\frac{\rho(r)}{\rho_{\rm crit}} = \frac{\delta_c}{(r/r_s)(1 + r/r_s)^2}$$

Navarro, Frenk&White, Astrophys.J.**490**, 493 (1997): halo shape spherical, independent on halo mass

Milky Way: $ho_0 = 0, 3 - 0, 5 \, GeV \, cm^{-3}$ (r=8kpc) $v_{rms} \approx 270 \, km \, s^{-1}$ $v_{esc} \approx 650 \, km \, s^{-1}$

 \rightarrow DM halo also in Milky Way

Maxwell-Boltzmann distribution of WIMP's in halo without net velocity:

with
$$\bar{v} = \langle v^2 \rangle^{1/2} = v_0 \sqrt{\frac{3}{2}}$$
 and $v_0 = 220$ km/s, $\langle v \rangle = 270$ km/s

with v_{esc} =650 km/s = escape velocity; v_e =235km/s ± 6% annual modulation

$WIMP(\chi)$ detection strategies

direct & indirect searches scattering vs. annihilation

elastic scattering on a nucleus

- nuclear recoils:
 - mass 50 GeV to ~ 1000 GeV
 - relative speed 270 km/s
 - (~ our orbital velocity around galactic center)
 - \Rightarrow only a few keV of recoil energy
- cross section $\sigma_{\chi} < 10^{-42} cm^2$ - local WIMP-density $\rho_{\chi} = 0.3 \ GeV/cm^3$ *(local density 0.3GeV/cm³ \rightarrow \sim 1 \ WIMP/200 cm^3)* \Rightarrow very very rare scattering events
 - (< 1 / week / kg)

> requirements

- annual modulation
- background suppression (active&passive)

HELMHOLTZ

WIMP(χ) direct detection strategies

WIMP(χ) direct detection strategies

WIMP(χ) direct detection schemes

TROPARTICLE PHYSIC

WIMP(χ) direct detection schemes

WIMP(χ) direct detection schemes

...what to do

it's all about shielding & background suppression:

- cosmic rays
- > cosmic μ -induced n,p, π , α ,...
- \succ ambient activity:
 - (α,n) from rock
 γ's from concrete
 - > 222 Rn in air (\rightarrow 210 Pb)
- > material activity:
 - ancient Pb shield
 - HOFC copper
 - detector purification
 - PMT selection

> and active suppression!!

Direct DM search using ionisation&heat

HELMHOLTZ

Ionisation&heat: principles

advantages:

- bolometric measurement of E_{dep}
- > good energy resolution (e.g. 150eV@6keV)
- Iow threshold
- > nuclear recoil \rightarrow phonon signal \rightarrow WIMP sensitivity
- PID capability via ionisation yield
- > modular detectors
 - \rightarrow scalability

disadvantages:

- temperature few mK
 - \rightarrow technical challenge
- slow phonon signal
- surface events with lower ionisation yield

limited target mass (so far)

cryogenic mono-crystal

Ionisation&heat: principles

Ionisation&heat: pulses & signals

Ionisation&heat: pulses & signals

heat

Templates built by event summation:

Template

-500

-1000

-1500

Ionisation&heat: quenching of ionisation

Ionisation&heat: calibration

Ionisation&heat: calibration

EDELWEISS @ LSM

features:

- reversed cryostat (100l volume)
- shielded by 20cm Pb & 50cm PE
- atmosphere filtered against Rn
- hermetic active µ veto (100m² modular)
- 4 types of detectors in operation
- data taking since end of 2007

cryostat for up to 120 bolometers in 10 towers

HELMHOLTZ

CDMS @ Soudan

Soudan Mine, Minnesota

features:

- 30 detectors installed in 5 towers
- 4.75kg Ge & 1.1kg Si det's
- data taking since 10/2006 (>1000kg.d raw data)

data published for 121.3kg.d effective exposure (arXiv:0802.3530v2; PRL 102, 011301 (2009))

HELMHOLTZ

3''(7.6 cm)

 $1 \,\mathrm{cm}$

GEMEINSCHAFT

EDELWEISS @ LSM: bgd from Rn

TROPARTICLE PHYSICS

Ionisation&heat: the challenge of rejecting surface events

strategy:

- reduction of background sources (cleaning, material selection, air filtering, ...)
- 2. active suppression via phonon signal
- 3. active suppression via ionisation signal

rejection of surface events

... via phonon signal (Edelweiss): 70nm thin film thermometer made of Nb_xSi_{1-x} comb structure: 0.5mm gap, width 50µm, x=0.085

discrimination improvement of a factor of 20 fiducial volume reduction of ~10% only

after

(1mm)

rejection of surface events

Karlsruhe Institute of Technology

Direct DM search using scint.&heat

Scintillation & heat

energy measurement with phonon channel, PID via quenching of scintillation light:

CRESST-2:

@LNGS; 10x300g CaWO₄ (r=20mm, d=40mm); light detection with Si bolometer; data taking

Rosebud:

@Canfranc; sapphire (AI_2O_3) crystals, 54g CaWO₄→ 10kg.d; BGO $(Bi_4Ge_3O_{12})^{209}Bi$ with J=9/2 → SI&SD-search

Edelweiss-IAS:

@LSM; 50g Al₂O₃, R&D data taking

Scintillation & heat: the CryogenicRareEventSearch withSuperconductingThermometers expt.

Max-Planck-Institut für Physik

University of Oxford

Technische Universität München Laboratori Nazionali del Gran Sasso Universität Tübingen

Features:

- mass : 10 kg CaWO₄
- threshold lower than 15 keV (recoils)
- excellent background discrimination
- identification of recoil nucleus

HELMHOLTZ

Scintillation & heat detector module

mm 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

reflector: polymeric foil, plastic scintillator with Al reflector operating temperature: 10 mK

33 modules in CRESST II

phonon channel: 300g CaWO₄ Ø = 40mm, h = 40mm W-SPT 4 × 6 mm² light channel: Si Ø = 30 mm; h = 0.4 mm W-SPT with Al phonon collector

HELMHOLTZ

Scintillation & heat

Simultaneous measurement of phonons and scintillation light to discriminate nuclear recoil signals from radioactive background

GEMEINSCHAFT

RTICLE PHYSICS

Scintillation & heat

in der Helmholtz-Gemeinschaft

Simultaneous measurement of phonons and scintillation light to discriminate nuclear recoil signals from radioactive background

GEMEINSCHAFT

Scintillation & heat: CRESST II data

Scintillation & heat: CRESST II data

G

HELMHOLTZ

GEMEINSCHAFT

European cryogenic future:

- EURECA: beyond 10⁻⁹ pb, major efforts in background control and detector development
- Joint effort from teams from EDELWEISS, CRESST, ROSEBUD, CERN, + others...
- >>100 kg cryogenic experiment, multitarget : Scintillators and Germanium
- Part of ASPERA European Roadmap
- Preferred site: <u>60 000 m³ extension of</u> <u>present LSM (4 μ/m²/d), to be excavated</u> <u>in 2011-2012</u>
- Design study start by the end of the year
- Start installation by 2013

EURECA : 2 cryostats in water tanks

HELMHOLTZ

where do we stand? what to come next?

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

evidence of DM in astrophysics:

- galaxy motion/rotation
- galaxy crossing
- > CMB+BBN→ACDM

production of DM (χ) at the LHC?

exptl. signature: missing E, p

no hints for DM from direct searches:
no coherent scattering off nuclei (SI)
no signal from nuclei with spin (SD)

hints for DM from astroparticle physics:
annual modulation in DAMA/LIBRA
GeV e⁺ excess in PAMELA data

where do we stand? what to come next?

where do we stand? what to come next?

new experiments starting/about to start/planned:

