Contents

- the early days of CR radio detection
- the revival of CR radio detection
 - experiments
 - theory
 - results
- the future of CR radio detection

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

"Proof of Principle" with LOPES10

Radio map of an air shower detected with LOPES10.

Falcke et al. (LOPES coll.), Nature 2005

- for a few nanoseconds, air showers are the brightest radio source in the sky
 - still, only a few eV of the original >10¹⁶ eV received
- first time detection of radio emission from air showers with a completely digital setup
 - full sky observation of transient signals
 - high angular resolution
 - digital filtering of man-made radio-frequency interference

der Helmholtz-Gemeinschaf

LOPES polarization characteristics

- geomagnetic emission models predict the polarization to depend on the azimuth angle of the air shower
- dual-polarized measurements in LOPES (10 EW, 10 NS, 5 with both polarisations) confirm this prediction

LOPES inclined showers

- strongy inclined showers (here up to 80°) are indeed well detectable with the radio technique
 - Iow attenuation of the radio signal
 - broader radio footprint (predicted by simulations)
 - advantage in case of LOPES: lower PMT noise (electromagnetic component has died out)

LOPES thunderstorm events

- events during thunderstorm conditions show unusually strong pulses
 additional emission due to strong atmospheric electric fields (> kV/m)
- an E-field meter in LOPES monitors thunderstorms
 - study possible connections between cosmic rays and lightning
- fair weather atmospheric fields (~10 100 V/m) have negligible influence
 - confirmed also by REAS2-simulations

LOPES lateral radio distributions

- measure signal in individual dipoles (strongest events)
- fit exponential decay (expected from theory and older results)
- fitting power-law also possible, but worse near core

Peculiar LOPES lateral distributions

Scale parameter R₀ correlations

CODALEMA lateral radio distributions

- also find exponential decay
- comparable scale parameters
- find some flat or flattening profiles, too

P. Lautridou et al. (CODALEMA coll.), ARENA 2008

Tim Huege <tim.huege@ik.fzk.de>, ISAPP 31-07-2009

CODALEMA lateral radio distributions

- also find exponential decay
- comparable scale parameters
- find some flat or flattening profiles, too

P. Lautridou et al. (CODALEMA coll.), ARENA 2008

Universität Karlsruhe (T

Tim Huege <tim.huege@ik.fzk.de>, ISAPP 31-07-2009

LOPES30 comparison with simulations

- LOPES30 fully calibrated (absolute field strengths)
- simulations per event with shower parameters from KASCADE
- Iateral slopes in simulations steeper than in data
- overall amplitude fits very well (always) at 75 m

General status

■ LOPES and CODALEMA have studied radio emission up to ~10¹⁸ eV

- scaling with CR energy coherent emission
- correlation with geomagnetic field direction geomagnetic emission
- polarisation characteristics geomagnetic emission
- exponential lateral distribution flattening in some cases
- absolute field strength of the emission
- direction resolution of radio measurements
- frequency spectra of the radio pulses
- curvature of the electromagnetic radio front
- dependence of radio emission on atmospheric electric fields
- some aspects have to be studied in more detail
 - flattening of lateral distributions
 - geomagnetic field dependence (amplitudes and polarisation)
 - energy reconstruction systematics
 - Xmax reconstruction capability
- radio emission above 10¹⁸ eV has yet to be studied
 - can we extrapolate from lower energies as predicted by theory?

Contents

- the early days of CR radio detection
- the revival of CR radio detection
 - experiments
 - theory
 - results
- the future of CR radio detection

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

LOFAR will measure CRs

Tim Huege <tim.huege@ik.fzk.de>, ISAPP 31-07-2009

in der Helmholtz-Gemeinschaft

LOFAR CR programme

UHEP: look for radio pulses from interactions in the lunar regolith

The Pierre Auger Observatory

- highest energies need huge arrays
- Southern site
 - Argentina
 - **3000 km**²
 - 1600 particle detectors
 - 24 optical telescopes
- Northern site
 - planned
 - USA
 - >20000 km²

Hybrid detection in Auger

- hybrid detection
 - particle detectors
 - fluorescence telescopes
- many advantages
 - cross-calibration
 - general redundance
 - minimisation of model dependence (energy scale)
- duty cycle of combined measurements only ~13%

Large scale radio detection in Auger

- so far only small experiments (<0.5 km²)
- radio detection is most interesting for ultra-high energy cosmic rays
- develop large-scale application
- R&D in the Pierre Auger Observatory
 - allows hybrid analysis together with particle and fluorescence detectors
 - in Argentinian pampa has very good radio noise conditions

many technological challenges

- decentralized array organisation
- autonomous, self-powered detector stations
- wireless communication between stations
- self-triggering on radio signals
- robustness (cows, strong winds, ...)
- R&D so far with a number of small test cells operating in various configurations

Externally triggered measurements at BLS DAQ and scintillators P5 Olaia er - Balloon Launching Station 🐋 P3 P1 Surface detector P6 P2 Antennas DAQ 215 m Pointer 35"18'04.96" S 69"32'39.74" Two scintillators provide external trigger. "Offline" search for coincidences with Auger SD.

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

- >25 coincident events between Auger SD and all 3 radio antennas
- signal usually seen in both antenna polarisations
- directions reconstructed with SD and radio are compatible
- angular resolution limited by GPS-only timing

Tim Huege <tim.huege@ik.fzk.de>, ISAPP 31-07-2009

in der Helmholtz-Gemeinschaft

Research University - founded 1825

Further results from BLS measurements

Universität Karlsruhe (TH)

Research University - founded 1825

- radio noise in both polarisations shows passage of Galactic centre
- can be used for amplitude calibration and antenna diagnosis

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

Results of measurements near CLF

- detectors have successfully self-triggered on radio pulses
- found 36 self-triggered radio events coincident with SD events
- 72% of the radio-triggered events come from south
 - threshold effect
 - confirmation of geomagnetic radio emission mechanism

Self-triggered setup at BLS: MAXIMA

collecting valuable experience for larger array under realistic conditions

- autonomous stations
- LPDA antennas
- solar-powered
- wireless comms
- self-triggered

FPGA self-trigger tests at BLS

- tests of a new antenna design (SALLA)
- test of a sophisticated self-trigger implemented on an FPGA
 - real-time RFI suppression for 40-80 MHz band
 - real-time pulse characterisation (after upsampling, enveloping)
 - trigger decision depending on pulse parameters

The Auger Engineering Radio Array

- small-scale tests concluded successfully
- next step: ~20 km² radio array, ~150 antennas
 - prototype array for large-scale radio detection
- super-hybrid measurements
 - co-located with HEAT (high-elevation fluorescence telescopes)
 - co-located with AMIGA (SD infill and muon counters)
- science goals of AERA
 - 1. study and understand in detail radio emission above 10^{17.5} eV
 - 2. evaluate capabilities of large scale radio detection wrt.
 - cosmic ray energy
 - cosmic ray mass
 - cosmic ray arrival direction
 - 3. perform cosmic ray measurements in the region of transition from galactic to extragalactic sources
 - energy spectrum
 - mass composition

Summary and conclusions

- radio detection of cosmic rays has experienced a true revival
- modern experiments have been very successful at <10¹⁸ eV
 - LOPES in Karlsruhe
 - CODALEMA in Nançay
 - we have made huge progress in understanding the radio emission but a number of open questions are still under investigation
- Iarge-scale application of radio detection can increase "hybrid" statistics at ultra-high energies by a factor of 10
 - the Auger Engineering Radio Array (AERA) will be the pioneering experiment for large scale radio detection of cosmic rays

The LOPES collaboration

ASTRON, DWINGELOO,

THE NETHERLANDS

L. BÄHREN	H. BUTCHER
G. DE BRUYN	C.M. DE VOS
G.W. KANT	Y. KOOPMAN
H.J. PEPPING	G. SCHOONDERBEE
W. VAN GAPELLEN	S. WIJNHOLDS

UNIVERSITÄT	SIEGEN, GERMANY
M. BRÜGGEMANN	P. BUCHHOLZ
C. GRUPEN	D. KICKELBICK
Y. KOLOTAEV	S. OVER
W. WALKOWIAK	

MAX-PLANCK-INSTITUT FÜR RADIO-ASTRONOMIE, BONN, GERMANY

P.L. BIERMANN J.A. ZENSUS

ISTITUTO D	I FISICA DELLO SPAZIO
INTERPLAN	ETARIO, TORINO, ITALY
P.L. GHIA	G. MORELLO
G.C. TRINCHERO	

SOLTAN INSTITUTE FOR NUCLEAR STUDIES, LODZ, POLAND P. LUCZAK J. ZABIEROWSKI

DEPT OF ASTROPHYSICS,		
NIJMEGEN, THE	NETHERLANDS	
S. BUITINK	H. FALCKE	
A. HORNEFFER	J. KUIJPERS	
S. LAFEBRE	A. NIGL	
J. PETROVIC	K. SINGH	

RADIO SHOW EMISSION COSMIC RATE 414

	NATIONAL INSTITUTE OF PHYSICS	
AND NUCLEAR ENGINEERING		
	BUCHAREST, ROMANIA	
	I.M. BRANCUS B. MITRICA	
-	M. PETCU A. SAFTIOU	
J	D. SIMA G. TOMA	
/		

DIPARTIMENTO DI FISICA GENERALE DELL'UNIVERSITA, TORINO, ITALY

M. BERTAINA	A. CHIAVASSA
F. DI PIERRO	G. NAVARRA

G. NAVARRA

INSTITUT FÜR KERNPHYSIK,

FZK, GERMANY

W.D. APEL	J.C. ARTEAGA
A.F. BADEA	K. BEKK
J. BLÜMER	H. Bozoos
F. COSSAVELLA	K. DAUMILLER
P. DOLL	R. ENGEL
A. HAKENJOS	A. HAUNGS
D. HECK	T. HUESE
P.G. ISAR	H.J. MATHES
H.J. MAYER	C. MEURER
J. MILKE	S. NEHLS
R. DBENLAND	J. DEHLSOHLÄGER
S. OSTAPCHENKO	T. PIEROS
S. PLEWNIA	H. REBEL
M. ROTH	H. SCHIELER
H. ULRICH	J. VAN BUREN
A. WEINDL	J. WOCHELE

IPE, FZK, GERMANY

т.	ASCH
	Kenner

H. GEMMEKE

UNIV KARLSRUHE, GERMANY

E. BETTINI A. HAKENJOS V. DE SOUZA J.R. HÖRANDEL

M. STÜMPERT

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Research University - founded 1825

Tim Huege <tim.huege@ik.fzk.de>, ISAPP 31-07-2009