Joachim Kopp

Max-Planck-Institut für Kernphysik, Heidelberg

30 July 2009, ISAPP School

JHEP **0805** (2008) 005 (arXiv:0802.2513), J. Phys. **G 36** (2009) 078001 (arXiv:0803.1424) JHEP **0906** (2009) 049 (arXiv:0904.4346)

Outline

Outline

² [Oscillations of Mössbauer neutrinos: Qualitative arguments](#page-15-0)

Classical Mössbauer effect: *Recoilfree* emission and absorption of γ-rays from nuclei bound in a crystal lattice.

Classical Mössbauer effect: *Recoilfree* emission and absorption of γ-rays from nuclei bound in a crystal lattice.

> R. L. Mössbauer, Z. Phys. **151** (1958) 124 H. Frauenfelder, *The Mössbauer effect*, W. A. Benjamin Inc., New York, 1962

 \rightarrow Extremely narrow emission and absorption lines

Classical Mössbauer effect: *Recoilfree* emission and absorption of γ-rays from nuclei bound in a crystal lattice.

- \rightarrow Extremely narrow emission and absorption lines
- \rightarrow Observation of gravitational redshift of photons

Classical Mössbauer effect: *Recoilfree* emission and absorption of γ-rays from nuclei bound in a crystal lattice.

- \rightarrow Extremely narrow emission and absorption lines
- \rightarrow Observation of gravitational redshift of photons
- \rightarrow Determination of the chemical environment of the emitting nucleus

Classical Mössbauer effect: *Recoilfree* emission and absorption of γ-rays from nuclei bound in a crystal lattice.

- \rightarrow Extremely narrow emission and absorption lines
- \rightarrow Observation of gravitational redshift of photons
- Determination of the chemical environment of the emitting nucleus

A similar effect should exist for neutrino emission/absorption in bound state β decay and induced electron capture processes.

W. M. Visscher, Phys. Rev. **116** (1959) 1581; W. P. Kells, J. P. Schiffer, Phys. Rev. **C28** (1983) 2162 R. S. Raghavan, hep-ph/0511191; R. S. Raghavan, hep-ph/0601079

A similar effect should exist for neutrino emission/absorption in bound state β decay and induced electron capture processes.

> W. M. Visscher, Phys. Rev. **116** (1959) 1581; W. P. Kells, J. P. Schiffer, Phys. Rev. **C28** (1983) 2162 R. S. Raghavan, hep-ph/0511191; R. S. Raghavan, hep-ph/0601079

Proposed experiment:

Production: ³H \rightarrow ³He⁺ + $\bar{\nu}_e$ + e⁻(bound) Detection: 3 He⁺ + *e*⁻(bound) + $\bar{\nu}_e$ \rightarrow 3 H

 $3H$ and $3He$ are embedded in metal crystals (metal hydrides).

A similar effect should exist for neutrino emission/absorption in bound state β decay and induced electron capture processes.

> W. M. Visscher, Phys. Rev. **116** (1959) 1581; W. P. Kells, J. P. Schiffer, Phys. Rev. **C28** (1983) 2162 R. S. Raghavan, hep-ph/0511191; R. S. Raghavan, hep-ph/0601079

Proposed experiment:

Production: ³H \rightarrow ³He⁺ + $\bar{\nu}_e$ + e⁻(bound) Detection: 3 He⁺ + *e*⁻(bound) + $\bar{\nu}_e$ \rightarrow 3 H

 $3H$ and $3He$ are embedded in metal crystals (metal hydrides).

Physics goals:

- Neutrino oscillations on a laboratory scale: $E = 18.6$ keV, $L_{\text{atm}}^{\text{osc}} \sim 20$ m.
- Gravitational interactions of neutrinos
- Study of solid state effects with unprecedented precision

Mössbauer neutrinos have very special properties:

- Neutrino receives *full* decay energy: $Q = 18.6$ keV
- Natural line width: $\gamma \sim 1.17 \times 10^{-24}$ eV
- Atucal line width: $\gamma \ge 10^{-11}$ eV
	- \blacktriangleright Inhomogeneous broadening (Impurities, lattice defects)
	- \blacktriangleright Homogeneous broadening (Spin interactions)

R. S. Raghavan, W. Potzel

Mössbauer neutrinos have very special properties:

- Neutrino receives *full* decay energy: $Q = 18.6 \text{ keV}$
- Natural line width: $\gamma \sim 1.17 \times 10^{-24}$ eV
- Atucal line width: $\gamma \ge 10^{-11}$ eV
	- \blacktriangleright Inhomogeneous broadening (Impurities, lattice defects)
	- \blacktriangleright Homogeneous broadening (Spin interactions)

R. S. Raghavan, W. Potzel

Experimental challenges:

- Is the Lamb-Mössbauer factor (fraction of recoil-free emissions/absorptions) large enough?
- Can a linewidth $\gamma \gtrsim 10^{-11}$ eV be achieved?
- Can the resonance condition be fulfilled?

Recent controversy:

- **•** Does the small energy uncertainty prohibit oscillations of Mössbauer neutrinos?
- Do oscillating neutrinos need to have equal energies resp. equal momenta?

S. M. Bilenky, F. v. Feilitzsch, W. Potzel, J. Phys. **G34** (2007) 987, hep-ph/0611285

Does the time-energy uncertainty relation prevent oscillations?

S. M. Bilenky, arXiv:0708.0260, S. M. Bilenky, F. v. Feilitzsch, W. Potzel, J. Phys. **G35** (2008) 095003 (arXiv:0803.0527), arXiv:0804.3409 E. Kh. Akhmedov, JK, M. Lindner, arXiv:0803.1424

Recent controversy:

- **•** Does the small energy uncertainty prohibit oscillations of Mössbauer neutrinos?
- Do oscillating neutrinos need to have equal energies resp. equal momenta?

S. M. Bilenky, F. v. Feilitzsch, W. Potzel, J. Phys. **G34** (2007) 987, hep-ph/0611285

Does the time-energy uncertainty relation prevent oscillations?

S. M. Bilenky, arXiv:0708.0260, S. M. Bilenky, F. v. Feilitzsch, W. Potzel, J. Phys. **G35** (2008) 095003 (arXiv:0803.0527), arXiv:0804.3409 E. Kh. Akhmedov, JK, M. Lindner, arXiv:0803.1424

 \Rightarrow Careful treatment with as few assumptions as possible is needed \Rightarrow Answer to the above questions will be No.

Outline

² [Oscillations of Mössbauer neutrinos: Qualitative arguments](#page-15-0)

Textbook derivation of the oscillation formula

Diagonalization of the mass terms of the charged leptons and neutrinos gives

$$
\mathcal{L} \supset -\frac{g}{\sqrt{2}} \left(\bar{e}_{\alpha L} \gamma^{\mu} U_{\alpha j} \nu_{jL} \right) W_{\mu}^{-} + \text{diag. mass terms } + h.c.
$$

(flavour eigenstates: $\alpha = e, \mu, \tau$, mass eigenstates: $j = 1, 2, 3$)

Textbook derivation of the oscillation formula

Diagonalization of the mass terms of the charged leptons and neutrinos gives

$$
\mathcal{L} \supset -\frac{g}{\sqrt{2}} \left(\bar{e}_{\alpha L} \gamma^{\mu} U_{\alpha j} \nu_{jL} \right) W_{\mu}^{-} + \text{diag. mass terms } + h.c.
$$

(flavour eigenstates: $\alpha = e, \mu, \tau$, mass eigenstates: $j = 1, 2, 3$) Assume, at time $t = 0$ and location $\vec{x} = 0$, a flavour eigenstate

$$
|\nu(0,0)\rangle = |\nu_{\alpha}\rangle = \sum_{i} U_{\alpha j}^* |\nu_j\rangle
$$

is produced. At time *t* and position \vec{x} , it has evolved into

$$
|\nu(t,\vec{x})\rangle=\sum_i U^*_{\alpha j}e^{-iE_jt+i\vec{p}_j\vec{x}}|\nu_i\rangle
$$

Textbook derivation of the oscillation formula

Diagonalization of the mass terms of the charged leptons and neutrinos gives

$$
\mathcal{L} \supset -\frac{g}{\sqrt{2}} \left(\bar{e}_{\alpha L} \gamma^{\mu} U_{\alpha j} \nu_{jL} \right) W_{\mu}^{-} + \text{diag. mass terms } + \text{ h.c.}
$$

(flavour eigenstates: $\alpha = e, \mu, \tau$, mass eigenstates: $j = 1, 2, 3$) Assume, at time $t = 0$ and location $\vec{x} = 0$, a flavour eigenstate

$$
|\nu(0,0)\rangle = |\nu_{\alpha}\rangle = \sum_{i} U_{\alpha j}^* |\nu_j\rangle
$$

is produced. At time *t* and position \vec{x} , it has evolved into

$$
|\nu(t,\vec{x})\rangle = \sum_i U^*_{\alpha j} e^{-iE_j t + i\vec{p}_j \vec{x}} |\nu_i\rangle
$$

Oscillation probability:

$$
P(\nu_\alpha \to \nu_\beta) = \left| \left\langle \nu_\beta | \nu(t, \vec{x}) \right\rangle \right|^2 = \sum_{j,k} U^*_{\alpha j} U_{\beta j} U_{\alpha k} U^*_{\beta k} e^{-i(E_j - E_k)t + i(\vec{p}_j - \vec{p}_k)\vec{x}}
$$

Typical *assumptions* in the "textbook derivation" of the oscillation formula:

Different mass eigenstates have equal energies: *E^j* = *E^k* ≡ *E*

("Evolution only in space", "Stationary evolution")

Typical *assumptions* in the "textbook derivation" of the oscillation formula:

 \bullet Different mass eigenstates have equal energies: $E_i = E_k ≡ E$

("Evolution only in space", "Stationary evolution") $\Rightarrow p_j = \sqrt{E^2 - m_j^2} \simeq E - \frac{m_j^2}{2E}$

$$
\displaystyle P(\nu_{\alpha}\rightarrow \nu_{\beta})=\sum_{j,k}U_{\alpha j}^*U_{\beta j}U_{\alpha k}U_{\beta k}^*e^{-i\frac{\Delta m_{jk}^2L}{2E}}
$$

Typical *assumptions* in the "textbook derivation" of the oscillation formula:

Different mass eigenstates have equal energies: *E^j* = *E^k* ≡ *E*

("Evolution only in space", "Stationary evolution") $\Rightarrow p_j = \sqrt{E^2 - m_j^2} \simeq E - \frac{m_j^2}{2E}$

$$
P(\nu_{\alpha}\rightarrow\nu_{\beta})=\sum_{j,k}U_{\alpha j}^{\ast}U_{\beta j}U_{\alpha k}U_{\beta k}^{\ast}e^{-i\frac{\Delta m_{jk}^{2}l}{2E}}
$$

 \bullet Different mass eigenstates have equal momenta: $p_j = p_k ≡ p$

("Evolution only in time", "Non-stationary evolution")

Typical *assumptions* in the "textbook derivation" of the oscillation formula:

Different mass eigenstates have equal energies: *E^j* = *E^k* ≡ *E*

("Evolution only in space", "Stationary evolution") $\Rightarrow p_j = \sqrt{E^2 - m_j^2} \simeq E - \frac{m_j^2}{2E}$

$$
P(\nu_{\alpha}\rightarrow \nu_{\beta})=\sum_{j,k}U_{\alpha j}^{\ast}U_{\beta j}U_{\alpha k}U_{\beta k}^{\ast}e^{-i\frac{\Delta m_{jk}^{2}}{2E}}
$$

 \bullet Different mass eigenstates have equal momenta: $p_j = p_k ≡ p$ ("Evolution only in time", "Non-stationary evolution") $\Rightarrow E_j = \sqrt{\rho^2 + m_j^2} \simeq p + \frac{m_j^2}{2 \rho}$

$$
P(\nu_{\alpha}\rightarrow \nu_{\beta})=\sum_{j,k}U_{\alpha j}^{\ast}U_{\beta j}U_{\alpha k}U_{\beta k}^{\ast}e^{-i\frac{\Delta m_{jk}^{2}T}{2\rho}}
$$

Typical *assumptions* in the "textbook derivation" of the oscillation formula:

Different mass eigenstates have equal energies: *E^j* = *E^k* ≡ *E*

("Evolution only in space", "Stationary evolution") $\Rightarrow p_j = \sqrt{E^2 - m_j^2} \simeq E - \frac{m_j^2}{2E}$

$$
P(\nu_{\alpha}\rightarrow \nu_{\beta})=\sum_{j,k}U_{\alpha j}^*U_{\beta j}U_{\alpha k}U_{\beta k}^*e^{-i\frac{\Delta m_{jk}^2L}{2E}}
$$

 \bullet Different mass eigenstates have equal momenta: $p_j = p_k ≡ p$ ("Evolution only in time", "Non-stationary evolution") $\Rightarrow E_j = \sqrt{\rho^2 + m_j^2} \simeq p + \frac{m_j^2}{2 \rho}$

$$
\mathcal{P}(\nu_\alpha\rightarrow\nu_\beta)=\sum_{j,k}\,U_{\alpha j}^*U_{\beta j}U_{\alpha k}U_{\beta k}^*e^{-i\frac{\Delta m_{jk}^2T}{2\rho}}
$$

These are *assumptions* or *approximations*, not fundamental principles!

• In general, neither the equal energy assumption nor the equal momentum assumption is physically justified because both violate energy-momentum conservation in the production and detection processes.

> R. G. Winter, Lett. Nuovo Cim. **30** (1981) 101 C. Giunti, W. Kim, Found. Phys. Lett. **14** (2001) 213, hep-ph/0011072

C. Giunti, Mod. Phys. Lett. **A16** (2001) 2363, hep-ph/0104148, C. Giunti, Found. Phys. Lett. **17** (2004) 103, hep-ph/0302026

• In general, neither the equal energy assumption nor the equal momentum assumption is physically justified because both violate energy-momentum conservation in the production and detection processes.

R. G. Winter, Lett. Nuovo Cim. **30** (1981) 101

C. Giunti, W. Kim, Found. Phys. Lett. **14** (2001) 213, hep-ph/0011072

C. Giunti, Mod. Phys. Lett. **A16** (2001) 2363, hep-ph/0104148, C. Giunti, Found. Phys. Lett. **17** (2004) 103, hep-ph/0302026

Example: Pion decay at rest: $\pi^+ \to \mu^+ + \nu_\mu$, $\pi^- \to \mu^- + \bar{\nu}_\mu$

• In general, neither the equal energy assumption nor the equal momentum assumption is physically justified because both violate energy-momentum conservation in the production and detection processes.

> R. G. Winter, Lett. Nuovo Cim. **30** (1981) 101 C. Giunti, W. Kim, Found. Phys. Lett. **14** (2001) 213, hep-ph/0011072

C. Giunti, Mod. Phys. Lett. **A16** (2001) 2363, hep-ph/0104148, C. Giunti, Found. Phys. Lett. **17** (2004) 103, hep-ph/0302026

Example: Pion decay at rest: $\pi^+ \to \mu^+ + \nu_\mu$, $\pi^- \to \mu^- + \bar{\nu}_\mu$

Energy-momentum conservation for emission of mass eigenstate $|\nu_i\rangle$:

 $E_i^2 = \frac{m_{\pi}^2}{4}$ 4 $\left(1 - \frac{m_{\mu}^{2}}{m^{2}}\right)$ m_π^2 $\int_{0}^{2} + \frac{m_i^2}{2}$ 2 $\left(1 - \frac{m_{\mu}^{2}}{m^{2}}\right)$ m_π^2 $+ \frac{m_i^4}{4m_\pi^2}$ $p_i^2 = \frac{m_\pi^2}{4}$ 4 $\left(1-\frac{m_{\mu}^{2}}{m^{2}}\right)$ m_π^2 $\bigg)^2 - \frac{m_i^2}{2}$ 2 $\left(1 - \frac{m_{\mu}^2}{m^2}\right)$ *m*² π $+ \frac{m_i^4}{4m_\pi^2}$ For massless neutrinos: $E_i = p_i = E \equiv \frac{m_\pi}{2}$ $\left(1 - \frac{m_{\mu}^2}{m_{\pi}^2}\right)$ $\Big) \simeq 30$ MeV. To first order in m_i^2 . m_i^2 m_i^2 m_{μ}^2

$$
E_i \simeq E + \xi \frac{m_i^2}{2E}, \qquad p_i \simeq E - (1-\xi) \frac{m_i^2}{2E}, \qquad \xi \approx \frac{1}{2} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right) \approx 0.2
$$

• Mössbauer neutrinos are the *only* realistic case, where $E_j \simeq E_k$ holds *approximately*, due to the tiny energy uncertainty, $\sigma_F \sim 10^{-11}$ eV.

• Mössbauer neutrinos are the *only* realistic case, where $E_j \simeq E_k$ holds *approximately*, due to the tiny energy uncertainty, $\sigma_F \sim 10^{-11}$ eV. \Rightarrow We thus expect:

$$
\mathcal{P}(\nu_\alpha\rightarrow\nu_\beta)=\sum_{j,k}U_{\alpha j}^*U_{\beta j}U_{\alpha k}U_{\beta k}^*e^{-i\frac{\Delta m_{jk}^2}{2E}}
$$

• Mössbauer neutrinos are the *only* realistic case, where $E_i \simeq E_k$ holds *approximately*, due to the tiny energy uncertainty, $\sigma_F \sim 10^{-11}$ eV. \Rightarrow We thus expect:

$$
P(\nu_{\alpha}\rightarrow\nu_{\beta})=\sum_{j,k}U_{\alpha j}^*U_{\beta j}U_{\alpha k}U_{\beta k}^*e^{-i\frac{\Delta m_{jk}^2}{2E}}
$$

- More realistic treatment desirable: Wave packet model
	- \blacktriangleright Requires neither equal *E* nor equal *p*
	- \blacktriangleright Takes into account finite resolutions of the source and the detector

• Mössbauer neutrinos are the *only* realistic case, where $E_i \simeq E_k$ holds *approximately*, due to the tiny energy uncertainty, $\sigma_F \sim 10^{-11}$ eV. \Rightarrow We thus expect:

$$
P(\nu_{\alpha}\rightarrow\nu_{\beta})=\sum_{j,k}U_{\alpha j}^*U_{\beta j}U_{\alpha k}U_{\beta k}^*e^{-i\frac{\Delta m_{jk}^2}{2E}}
$$

- More realistic treatment desirable: Wave packet model
	- \blacktriangleright Requires neither equal *E* nor equal *p*
	- \blacktriangleright Takes into account finite resolutions of the source and the detector

Beuthe, Giunti, Grimus, Kiers, Kim, Lee, Mohanty, Nussinov, Stockinger, Weiss, . . .

Coherence in production and detection processes

Coherence in production and detection processes Neutrino oscillations are caused by the superposition of different mass eigenstates.

 \Rightarrow If an experiment can distinguish different mass eigenstates, oscillations will vanish.

Coherence in production and detection processes Neutrino oscillations are caused by the superposition of different mass eigenstates.

 \Rightarrow If an experiment can distinguish different mass eigenstates, oscillations will vanish.

Requirement for mass resolution σ*m*:

 $\sigma_m^2 = \sqrt{(2E\sigma_E)^2 + (2p\sigma_p)^2} > \Delta m^2$

B. Kayser, Phys. Rev. **D24** (1981) 110

Coherence in production and detection processes Neutrino oscillations are caused by the superposition of different mass eigenstates.

 \Rightarrow If an experiment can distinguish different mass eigenstates, oscillations will vanish.

Requirement for mass resolution σ*m*:

$$
\sigma_m^2=\sqrt{(2E\sigma_E)^2+(2p\sigma_p)^2}>\Delta m^2
$$

B. Kayser, Phys. Rev. **D24** (1981) 110

This is easily fulfilled for Mössbauer neutrinos, since

 σ ^E \sim 10⁻¹¹ eV σ*^p* = 1/2σ*^x* ∼ 1/interatomic distance ∼ 10 keV $E = p = 18.6 \text{ keV}$

- Coherence in production and detection processes
- Coherence maintained during propagation

- Coherence in production and detection processes
- Coherence maintained during propagation Decoherence could be caused by wave packet separation

$$
\bigwedge\hspace{-0.25cm}\bigwedge\hspace{-0.25cm}\stackrel{v_i}{\longrightarrow}\hspace{-0.25cm}v_j\not\bigwedge\hspace{-0.25cm}\stackrel{v_j}{\longrightarrow}\hspace{-0.25cm}\bigwedge\hspace{-0.25cm}\stackrel{v_j}{\longrightarrow}\hspace{-0.25cm}
$$

- Coherence in production and detection processes
- Coherence maintained during propagation Decoherence could be caused by wave packet separation

It can be shown that, for Mössbauer neutrinos, σ*^p* is small enough, so that

 $L^{\rm osc} \ll L^{\rm coh}$.

- Coherence in production and detection processes
- Coherence maintained during propagation Decoherence could be caused by wave packet separation

It can be shown that, for Mössbauer neutrinos, σ*^p* is small enough, so that

 $L^{\rm osc} \ll L^{\rm coh}$.

 \Rightarrow Stanard oscillation formula is approximately recovered:

$$
\begin{aligned} P_{ee} &= \sum_{j,k} |U_{ej}|^2 |U_{ek}|^2 \exp\big[-2\pi i \frac{L}{L_{jk}^{\rm osc}}\big] \\ L_{jk}^{\rm osc} &= \frac{4\pi E}{\Delta m_{jk}^2} \end{aligned}
$$

Outline

² [Oscillations of Mössbauer neutrinos: Qualitative arguments](#page-15-0)

Quantum field theoretical treatment

Aim: Properties of the neutrino should be automatically determined from properties of the source and the detector.

Quantum field theoretical treatment

Aim: Properties of the neutrino should be automatically determined from properties of the source and the detector.

Idea: Treat neutrino as an internal line in a tree level Feynman diagram:

Quantum field theoretical treatment

Aim: Properties of the neutrino should be automatically determined from properties of the source and the detector.

Idea: Treat neutrino as an internal line in a tree level Feynman diagram:

External particles reside in harmonic oscillator potentials. E.g. for ³H atoms in the source:

$$
\psi_{\mathsf{H},\mathcal{S}}(\vec{x},t)=\left[\frac{m_{\mathsf{H}}\omega_{\mathsf{H},\mathcal{S}}}{\pi}\right]^{\frac{3}{4}}\exp\left[-\frac{1}{2}m_{\mathsf{H}}\omega_{\mathsf{H},\mathcal{S}}|\vec{x}-\vec{x}_{\mathcal{S}}|^2\right]\cdot e^{-iE_{\mathsf{H},\mathcal{S}}t}
$$

Oscillation amplitude

$$
i\mathcal{A} = \int d^3x_1 dt_1 \int d^3x_2 dt_2 \left(\frac{m_{H}\omega_{H,S}}{\pi}\right)^{\frac{3}{4}} \exp\left[-\frac{1}{2}m_{H}\omega_{H,S}|\vec{x}_1 - \vec{x}_S|^2\right] e^{-iE_{H,S}t_1}
$$

$$
\cdot \left(\frac{m_{He}\omega_{He,S}}{\pi}\right)^{\frac{3}{4}} \exp\left[-\frac{1}{2}m_{He}\omega_{He,S}|\vec{x}_1 - \vec{x}_S|^2\right] e^{+iE_{He,S}t_1}
$$

$$
\cdot \left(\frac{m_{He}\omega_{He,D}}{\pi}\right)^{\frac{3}{4}} \exp\left[-\frac{1}{2}m_{He}\omega_{He,D}|\vec{x}_2 - \vec{x}_D|^2\right] e^{-iE_{He,D}t_2}
$$

$$
\cdot \left(\frac{m_{H}\omega_{H,D}}{\pi}\right)^{\frac{3}{4}} \exp\left[-\frac{1}{2}m_{H}\omega_{H,D}|\vec{x}_2 - \vec{x}_D|^2\right] e^{+iE_{H,D}t_2}
$$

$$
\cdot \sum_j \mathcal{M}^{\mu} \mathcal{M}^{\nu*} |U_{ej}|^2 \int \frac{d^4p}{(2\pi)^4} e^{-ip_0(t_2 - t_1) + i\vec{p}(\vec{x}_2 - \vec{x}_1)}
$$

$$
\cdot \vec{u}_{e,S} \gamma_{\mu} (1 - \gamma^5) \frac{i(\cancel{p} + m_j)}{p_0^2 - \vec{p}^2 - m_j^2 + i\epsilon} (1 + \gamma^5) \gamma_{\nu} u_{e,D}.
$$

Oscillation amplitude

$$
i\mathcal{A} = \int d^3x_1 dt_1 \int d^3x_2 dt_2 \left(\frac{m_{H}\omega_{H,S}}{\pi}\right)^{\frac{3}{4}} \exp\left[-\frac{1}{2}m_{H}\omega_{H,S}|\vec{x}_1 - \vec{x}_S|^2\right] e^{-iE_{H,S}t_1}
$$

$$
\cdot \left(\frac{m_{He}\omega_{He,S}}{\pi}\right)^{\frac{3}{4}} \exp\left[-\frac{1}{2}m_{He}\omega_{He,S}|\vec{x}_1 - \vec{x}_S|^2\right] e^{+iE_{He,S}t_1}
$$

$$
\cdot \left(\frac{m_{He}\omega_{He,D}}{\pi}\right)^{\frac{3}{4}} \exp\left[-\frac{1}{2}m_{He}\omega_{He,D}|\vec{x}_2 - \vec{x}_D|^2\right] e^{-iE_{He,D}t_2}
$$

$$
\cdot \left(\frac{m_{H}\omega_{H,D}}{\pi}\right)^{\frac{3}{4}} \exp\left[-\frac{1}{2}m_{H}\omega_{H,D}|\vec{x}_2 - \vec{x}_D|^2\right] e^{+iE_{H,D}t_2}
$$

$$
\cdot \sum_j \mathcal{M}^{\mu} \mathcal{M}^{\nu*} |\mathcal{U}_{ej}|^2 \int \frac{d^4p}{(2\pi)^4} e^{-ip_0(t_2 - t_1) + i\vec{p}(\vec{x}_2 - \vec{x}_1)}
$$

$$
\cdot \vec{u}_{e,S}\gamma_{\mu}(1 - \gamma^5) \frac{i(\cancel{p} + m_j)}{\cancel{p_0^2 - \vec{p}^2 - m_j^2 + i\epsilon}} (1 + \gamma^5)\gamma_{\nu} u_{e,D}.
$$

Evaluation:

- \bullet *dt*₁ *dt*₂-integrals \rightarrow energy-conserving δ functions \rightarrow *p*₀-integral trivial
- *d* ³*x*¹ *d* ³*x*2-integrals are Gaussian
- *d* ³*p*-integral: Use Grimus-Stockinger theorem

The Grimus-Stockinger theorem

Let $\psi(\vec{\rho})$ be a three times continuously differentiable function on \mathbb{R}^3 , such that ψ itself and all its first and second derivatives decrease at least like 1/| $\vec{\rho} |^2$ for $|\vec{\rho}| \rightarrow \infty$. Then, for any real number $A > 0$,

$$
\int d^3p \frac{\psi(\vec{p}) e^{i\vec{p}\vec{L}}}{A - \vec{p}^2 + i\epsilon} \xrightarrow{| \vec{L} | \to \infty} -\frac{2\pi^2}{L} \psi(\sqrt{A}_{\vec{L}}) e^{i\sqrt{A}L} + \mathcal{O}(L^{-\frac{3}{2}}).
$$

 \Rightarrow Quantification of requirement of on-shellness for large $L = |\vec{L}|$.

W. Grimus, P. Stockinger, Phys. Rev. **D54** (1996) 3414, hep-ph/9603430

From the amplitude to the transition rate

Amplitude:

$$
i\mathcal{A} = \frac{-i}{2L} \mathcal{N} \delta(E_S - E_D) \exp\left[-\frac{E_S^2 - m_j^2}{2\sigma_p^2}\right] \sum_j \mathcal{M}^{\mu} \mathcal{M}^{\nu*} |U_{\theta j}|^2 e^{i\sqrt{E_S^2 - m_j^2}L} \n\cdot \bar{u}_{e,S} \gamma_{\mu} \frac{1 - \gamma^5}{2} (\not{p}_j + m_j) \frac{1 + \gamma^5}{2} \gamma_{\nu} u_{e,D},
$$
\n
$$
\sigma_p^{-2} = (m_{\text{H}} \omega_{\text{H},S} + m_{\text{He}} \omega_{\text{He},S})^{-1} + (m_{\text{H}} \omega_{\text{H},D} + m_{\text{He}} \omega_{\text{He},D})^{-1}
$$

From the amplitude to the transition rate

Amplitude:

$$
i\mathcal{A} = \frac{-i}{2L} \mathcal{N} \delta(E_S - E_D) \exp\left[-\frac{E_S^2 - m_j^2}{2\sigma_p^2}\right] \sum_j \mathcal{M}^{\mu} \mathcal{M}^{\nu*} |U_{\theta j}|^2 e^{i\sqrt{E_S^2 - m_j^2}L}
$$

$$
\cdot \bar{u}_{e,S} \gamma_{\mu} \frac{1 - \gamma^5}{2} (\not{p}_j + m_j) \frac{1 + \gamma^5}{2} \gamma_{\nu} u_{e,D},
$$

$$
\sigma_p^{-2} = (m_H \omega_{H,S} + m_{He} \omega_{He,S})^{-1} + (m_H \omega_{H,D} + m_{He} \omega_{He,D})^{-1}
$$

Transition rate: Integrate $|A|^2$ over densities of initial and final states

$$
\begin{aligned} \Gamma &\propto \int_0^\infty dE_{\text{H},S}\ dE_{\text{He},S}\ dE_{\text{He},D}\ dE_{\text{H},D} \\ &\cdot \delta(E_S-E_D)\rho_{\text{H},S}(E_{\text{H},S})\ \rho_{\text{He},D}(E_{\text{He},D})\ \rho_{\text{He},S}(E_{\text{He},S})\ \rho_{\text{H},D}(E_{\text{H},D}) \\ &\cdot \sum_{j,k} |U_{\text{ej}}|^2 |U_{\text{ek}}|^2 \ \text{exp}\left[-\frac{2E_S^2-m_j^2-m_k^2}{2\sigma_p^2}\right] \underbrace{e^{i\left(\sqrt{E_S^2-m_j^2}-\sqrt{E_S^2-m_k^2}\right)L}}_{\text{Oscillation phase}} \\ &\xrightarrow[\text{Recoil-free fraction)} \end{aligned}
$$

The Lamb-Mössbauer factor is the relative probability of recoil-free emission and absorption, compared to the total emission and absorption probability.

The Lamb-Mössbauer factor is the relative probability of recoil-free emission and absorption, compared to the total emission and absorption probability.

Difference to the standard Mössbauer effect: Appearance of neutrino masses \Rightarrow Emission and absorption of lighter mass eigenstates is suppressed compared to that of heavy mass eigenstates

The Lamb-Mössbauer factor is the relative probability of recoil-free emission and absorption, compared to the total emission and absorption probability.

Difference to the standard Mössbauer effect: Appearance of neutrino masses \Rightarrow Emission and absorption of lighter mass eigenstates is suppressed compared to that of heavy mass eigenstates

Convenient reformulation:

$$
\exp\left[-\frac{2E_S^2 - m_j^2 - m_k^2}{2\sigma_\rho^2}\right] = \exp\left[-\frac{(\rho_{jk}^{\min})^2}{\sigma_\rho^2}\right] \exp\left[-\frac{|\Delta m_{jk}^2|}{2\sigma_\rho^2}\right]
$$
\nwhere $(\rho_{jk}^{\min})^2 = E_S^2 - \max(m_j^2, m_k^2)$.

The Lamb-Mössbauer factor is the relative probability of recoil-free emission and absorption, compared to the total emission and absorption probability.

Difference to the standard Mössbauer effect: Appearance of neutrino masses \Rightarrow Emission and absorption of lighter mass eigenstates is suppressed compared to that of heavy mass eigenstates

Convenient reformulation:

$$
\exp\bigg[-\frac{2E_S^2-m_j^2-m_k^2}{2\sigma_p^2}\bigg]=\exp\bigg[-\frac{(\rho_{jk}^{\min})^2}{\sigma_p^2}\bigg]\exp\bigg[-\frac{|\Delta m_{jk}^2|}{2\sigma_p^2}\bigg]
$$

 $\mathsf{where} \; (p_{jk}^{\min})^2 = E_S^2 - \max(m_j^2, m_k^2).$

⇒ Localization condition

 $4\pi\sigma_x E/\sigma_p \lesssim L^{\rm osc}_{jk}$

(with $\sigma_x = 1/2\sigma_p$) is satisfied if $L_{jk}^{\rm osc} \gtrsim 2\pi\sigma_x$, which is easily fulfilled in realistics situations.

Energy levels of ³H and ³He in the source and detector are smeared e.g. due to spin-spin interactions, crystal impurities, lattice defects, etc.

R. S. Raghavan, hep-ph/0601079

W. Potzel, Phys. Scripta **T127** (2006) 85

B. Balko, I. W. Kay, J. Nicoll, J. D. Silk, G. Herling, Hyperfine Int. **107** (1997) 283

Energy levels of ³H and ³He in the source and detector are smeared e.g. due to spin-spin interactions, crystal impurities, lattice defects, etc.

R. S. Raghavan, hep-ph/0601079

W. Potzel, Phys. Scripta **T127** (2006) 85

B. Balko, I. W. Kay, J. Nicoll, J. D. Silk, G. Herling, Hyperfine Int. **107** (1997) 283

Good approximation:

$$
\rho_{A,B}(E_{A,B}) = \frac{\gamma_{A,B}/2\pi}{(E_{A,B}-E_{A,B,0})^2 + \gamma_{A,B}^2/4}
$$

Energy levels of ³H and ³He in the source and detector are smeared e.g. due to spin-spin interactions, crystal impurities, lattice defects, etc.

R. S. Raghavan, hep-ph/0601079

W. Potzel, Phys. Scripta **T127** (2006) 85

B. Balko, I. W. Kay, J. Nicoll, J. D. Silk, G. Herling, Hyperfine Int. **107** (1997) 283

Good approximation:

$$
\rho_{A,B}(E_{A,B}) = \frac{\gamma_{A,B}/2\pi}{(E_{A,B}-E_{A,B,0})^2 + \gamma_{A,B}^2/4}
$$

Result for two neutrino flavours:

$$
\Gamma \propto \frac{(\gamma_S + \gamma_D)/2\pi}{(E_{S,0} - E_{D,0})^2 + \frac{(\gamma_S + \gamma_D)^2}{4}} \cdot \left\{ 1 - 2s^2 c^2 \left[1 - \frac{1}{2} (e^{-L/L_S^{coh}} + e^{-L/L_D^{coh}}) \cos\left(\pi \frac{L}{L_{osc}}\right) \right] \right\}
$$

$$
L_{S,D}^{coh} = 4\bar{E}^2/\Delta m^2 \gamma_{S,D}
$$

Energy levels of $3H$ and $3He$ in the source and detector are smeared e.g. due to spin-spin interactions, crystal impurities, lattice defects, etc.

R. S. Raghavan, hep-ph/0601079

W. Potzel, Phys. Scripta **T127** (2006) 85

B. Balko, I. W. Kay, J. Nicoll, J. D. Silk, G. Herling, Hyperfine Int. **107** (1997) 283

Good approximation:

$$
\rho_{A,B}(E_{A,B}) = \frac{\gamma_{A,B}/2\pi}{(E_{A,B}-E_{A,B,0})^2 + \gamma_{A,B}^2/4}
$$

Result for two neutrino flavours:

$$
\Gamma \propto \frac{(\gamma_S + \gamma_D)/2\pi}{(E_{S,0} - E_{D,0})^2 + \frac{(\gamma_S + \gamma_D)^2}{4}} \cdot \left\{ 1 - 2s^2 c^2 \left[1 - \frac{1}{2} (e^{-L/L_S^{coh}} + e^{-L/L_D^{coh}}) \cos\left(\pi \frac{L}{L_{osc}}\right) \right] \right\}
$$

con

In realistic cases: $L^{\rm coh}_{S,D}\gg L^{\rm osc}\Rightarrow$ Decoherence is not an issue.

L

Outline

[Oscillations of Mössbauer neutrinos: Qualitative arguments](#page-15-0)

Mössbauer neutrinos do oscillate.

- Mössbauer neutrinos do oscillate.
- Plane wave treatment: Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.

- Mössbauer neutrinos do oscillate.
- Plane wave treatment: Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.
- Wave packet treatment:

- Mössbauer neutrinos do oscillate.
- Plane wave treatment: Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.
- Wave packet treatment:
	- \triangleright Coherence and localization conditions are irrelevant for realistic experiments.

- Mössbauer neutrinos do oscillate.
- Plane wave treatment: Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.
- Wave packet treatment:
	- \triangleright Coherence and localization conditions are irrelevant for realistic experiments.
	- \triangleright Properties of the neutrino wave packets have to be put in by hand.

- Mössbauer neutrinos do oscillate.
- Plane wave treatment: Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.
- Wave packet treatment:
	- \triangleright Coherence and localization conditions are irrelevant for realistic experiments.
	- \triangleright Properties of the neutrino wave packets have to be put in by hand.
- QFT treatment:

- Mössbauer neutrinos do oscillate.
- Plane wave treatment: Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.
- Wave packet treatment:
	- \triangleright Coherence and localization conditions are irrelevant for realistic experiments.
	- \triangleright Properties of the neutrino wave packets have to be put in by hand.
- QFT treatment:
	- \triangleright Only properties of the source and the detector are put in by hand.

- Mössbauer neutrinos do oscillate.
- Plane wave treatment: Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.
- Wave packet treatment:
	- \triangleright Coherence and localization conditions are irrelevant for realistic experiments.
	- \triangleright Properties of the neutrino wave packets have to be put in by hand.
- QFT treatment:
	- \triangleright Only properties of the source and the detector are put in by hand.
	- \triangleright Generalized Lamb-Mössbauer factor leads to localization condition.

- Mössbauer neutrinos do oscillate.
- Plane wave treatment: Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.
- Wave packet treatment:
	- \triangleright Coherence and localization conditions are irrelevant for realistic experiments.
	- \triangleright Properties of the neutrino wave packets have to be put in by hand.
- QFT treatment:
	- \triangleright Only properties of the source and the detector are put in by hand.
	- \triangleright Generalized Lamb-Mössbauer factor leads to localization condition.
	- \triangleright Nonzero line width leads to coherence condition.

- Mössbauer neutrinos do oscillate.
- Plane wave treatment: Mössbauer neutrinos are the *only* case where the equal energy assumption is justified.
- Wave packet treatment:
	- \triangleright Coherence and localization conditions are irrelevant for realistic experiments.
	- \triangleright Properties of the neutrino wave packets have to be put in by hand.

QFT treatment:

- \triangleright Only properties of the source and the detector are put in by hand.
- \triangleright Generalized Lamb-Mössbauer factor leads to localization condition.
- \triangleright Nonzero line width leads to coherence condition.
- \triangleright Both conditions are easily fulfilled in realistic experiments.

Thank you!