

# **HIGHLIGHTS FROM THE CMS EXPERIMENT**





Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik



# THE HISTORY

- 1984 Workshop for a hadron collider in the LEP-Tunnel, Lausanne
- 1987 Rubbia's "Long-Range Planning Committee" recommends to build, as an answer to the SSC in Texas, the Large Hadron Collider at CERN
- 1988 Early detector concepts
- 1990 Large Hadron Collider Workshop Aachen
- 1992 Conference on LHC physics and detectors in Evian les Bains
- 1993 *Letters of Intent* (ATLAS und CMS were chosen)
- 1994 Technical Design Reports
- 1998 Begin of construction of detector- und accelerator elements
- 2004 Finishing the CMS cavern
- 2009 LHC and Detectors operational, first Proton-Proton-collisions expected end of year



### **ABOUT CERN**



Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik

### **VIEW INTO THE LHC TUNNEL**





- insgesamt 1232 Stück, 15 m lang
- 270'000 km Kabelstränge mit 6400
   7μm dicken supraleitenden Filamenten
- Strom von 11'700 A
- Betriebstemperatur von 1.9 K

#### Operation at -271°C





### **CONSTRUCTION OF THE ACCELERATOR**



Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik



# **II. THE CMS DETECTOR**



**CMS-Detector:** 

# Construction of parts in institutes, assembley at CERN





## **THE CHALLENGE**



• Event rates up to 800 MHz

- Per bunch crossing > 1000 charged tracks
- Very high radiation
- Very small cross sections

Eg.: To discover SM Higgs we need 10<sup>14</sup> events





#### 1987 Rubbia, Kienzle: "Iron Ball"

### 1988 Della Negra, Eggert: "CMS"





### THE DETECTOR PRINCIPLE



Th. Müller, Institut für Experimentelle Kernphysik



# **1. THE MAGNET**





- 2112 Windings in 4 Layers
- Supra-conducting AI enforced NbTi
- 19 kA
- 220 t cold mass at 4.5K (Helium)
- Field energy 2.5 GJ
- Return yoke 10 000 t iron
- Axial force: 120 MN
- Operating field at 3.8 T
- Thickness 70 cm (1.1  $\lambda$ )





### **MAGNET CONSTRUCTION**



#### Construction of yoke at DWE-ship yard

Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik



### 2. THE TRACKER







## **CONTRIBUTIONS BY KARLSRUHE**



Th. Müller, Institut für Experimentelle Kernphysik



## **FURTHER CONTRIBUTIONS**

- •Detector control system
- •Power supplies
- •Cabling and commisioning in CMS





Th. Müller, Institut







Efficiency

0.96 E

0.94

0.92

0.9

## **TRACKER PERFORMANCE**

### **Test of Tracker:**

- $-15^{\circ}C < T_{cooling} < +15^{\circ}C$
- 47 Million Cosmic-Triggers
- 3 tracking algorithms adapted to cosmics

Data

Simulation



Katja Klein (RWTH Aachen) Highlights from the CMS Detector

98%

Status des CMS Detektors & erste Physikmessungen Th. Müller, Institut für Experimentelle Kernphysik



# **3. THE PIXEL DETECTOR**

- Gute Impaktparameterauflösung für sekundäre Vertices von b- und  $\tau$ -Zerfällen
- Seeds für Spurfindung
- Hybrid-Technologie
- n+ Pixel (100  $\mu$ m (r- $\phi$ ) x 150  $\mu$ m (z)) auf n-Substrat
- Ladungsteilung zw. Pixeln wegen Lorentzwinkel (Barrel) und Geometrie (Forward) plus analoge Auslese -> 15-20 μm Ortsauflösung





# 4. THE ELECTROMAGNETIC CALORIMETER

- Benchmark-Kanal: Η -> γγ
- Anforderungen:
  - Exzellente Energieauflösung
  - Hohe Granularität

## **Preshower zur** $\pi^0$ **-Unterdrückung**

- 1.6 < |η| < 2.6
- Bleiabsorber/Siliziumstreifendetektoren
- 2 Lagen  $\triangleq$  2 X<sub>0</sub>





### Bleiwolframat-Kristalle:

- •Hohe Dichte: 8.28 g/cm<sup>3</sup>
- Kurze Strahlungslänge: 0.89cm
- Kleiner Moliereradius: 2.2cm
- Schnell: 80% des Lichts wird in 25ns
- Geringe Lichtausbeute: 4.5 e<sup>-</sup> / MeV bei +18°C
- Lichtausbeute stark temperaturabhängig: –2.1% / °C bei +18°C
- -> T-Stabilisierung auf 0.05°C nötig!

$$\left(\frac{\sigma}{E}\right)^{2} = \left(\frac{2.8\%}{\sqrt{E(GeV)}}\right)^{2} + \left(\frac{0.12\,GeV}{E(GeV)}\right)^{2} + \left(0.3\%\right)^{2}$$











Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik



# **5. THE HADRON CALORIMETER**

- Hauptabsorber: Messing (70% Cu, 30% Zn) wegen Verfügbarkeit
- Detektor: 70 000 Kacheln aus Plastikszintillator (Strahlenhärte, Langzeitstabilität)
- Erwartete rohe **Energieauflösung** für Pionen (Teststrahl):  $\sigma/E = 120\%/\sqrt{E} + 6.9\%$

## Hadron Outer (HO) Calorimeter als "Tail Catcher"

- Spule und Joch als Absorber
- 1-2 Lagen Szintillator





Hadron Barrel (HB) - 16 Lagen Szintillator - 5.8  $\lambda$  / sin $\theta$ Hadron Endkappe (HE) - 19 Lagen Szintillator - 10  $\lambda$ Hadron Forward (HF) - Dosis: 5 MGy bei  $|\eta| = 5$ - Stahlabsorber - Quartzfibern

Th. Müller, Institut für Experimentelle Kernphysik





Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik



## 6. THE MUON SYSTEM



Highlights from the CMS Detector



#### **Barrel** (|η| < 1.2) :

- Niedrige Myon- & Untergrundrate
- B-Feld klein und im Joch verlaufend
   Driftröhren
- 4 Lagen, 250 Kammern, 18000 m<sup>2</sup> Gas: 85% CO2, 15% Argon Driftzeit: 380 ns

#### **Endkappe** (0.9 < $|\eta|$ < 2.4) :

- Hohe Myon- & Untergrundrate:  $\leq 1 \text{kHz/cm}^2$
- B-Feld groß und nicht uniform **Kathodenstreifenkammern** 
  - 3 4 Lagen, 468 Kammern, 5000m<sup>2</sup>

Th. Müller, Institut für Experimentelle Kernphysik



### **CONSTRUCTION IN AACHEN**













Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik



### **INSERTION OF MUON CHAMBERS**





Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik



## 7. TRIGGER, DAQ AND COMPUTING







![](_page_28_Picture_0.jpeg)

![](_page_29_Figure_0.jpeg)

# FINAL MOUNTING IN THE CAVERN

![](_page_29_Figure_2.jpeg)

![](_page_30_Picture_0.jpeg)

### **CMS ZONE IN CESSY**

![](_page_30_Picture_2.jpeg)

Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik

![](_page_32_Picture_0.jpeg)

### **TESTS OF FIRE EXTINGUISHER**

![](_page_32_Picture_2.jpeg)

![](_page_33_Picture_0.jpeg)

### FINAL ASSEMBLY

### Lowering of an End Cap

![](_page_33_Picture_3.jpeg)

![](_page_33_Picture_4.jpeg)

Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik

![](_page_34_Picture_0.jpeg)

Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik

![](_page_35_Picture_0.jpeg)

#### Lowering of the 1500 ton central piece

![](_page_35_Picture_2.jpeg)

Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik

![](_page_36_Picture_0.jpeg)

### **INSERTION OF THE HADRON CALORIMETER**

![](_page_36_Picture_2.jpeg)

![](_page_36_Picture_3.jpeg)

![](_page_36_Picture_4.jpeg)

Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik

![](_page_37_Picture_0.jpeg)

## ... AND THE EM CALORIMETER

![](_page_37_Picture_2.jpeg)

Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik

![](_page_38_Picture_0.jpeg)

### FINAL TESTS ON THE MUON SYSTEM

![](_page_38_Picture_2.jpeg)

Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik

![](_page_39_Picture_0.jpeg)

## **INSERTION OF THE TRACKER**

![](_page_39_Picture_2.jpeg)

Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik

![](_page_40_Picture_0.jpeg)

### CABLES

![](_page_40_Picture_2.jpeg)

![](_page_40_Picture_3.jpeg)

Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik

![](_page_41_Picture_0.jpeg)

## FIRST HITS IN CMS SEPT. 08

![](_page_41_Picture_2.jpeg)

![](_page_41_Picture_3.jpeg)

Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik

![](_page_42_Picture_0.jpeg)

### **OBSERVATION OF MUON SHOWERS**

![](_page_42_Figure_2.jpeg)

16

14(

120

10

80(

60

40

20(

0

2000 4000 6000

![](_page_43_Picture_0.jpeg)

# **III. FIRST PHYSICS WITH CMS**

Hypothesis: 0 < ∫L ≤ 1 fb<sup>-1</sup>
 in 2010

![](_page_43_Figure_3.jpeg)

![](_page_44_Picture_0.jpeg)

# **QCD STUDIES**

Charged pions

Measured

Tsallis fit

12

CMS Preliminary simulation

### Minimum Bias = inelastic soft collisions

#### Important to know:

- Minimum Bias ist background for all other channels
- Radiation dose, occupancy, ...
- Minimum or zero bias trigger ( $\approx$  1 Hz)
- $p_T < 1$ GeV for most particles
- Separation of  $\pi$ , K and p through **dE/dx** in Silicon-Tracker (!)

![](_page_44_Figure_9.jpeg)

![](_page_45_Picture_0.jpeg)

# **EW PHYSICS**

![](_page_45_Picture_2.jpeg)

![](_page_45_Figure_3.jpeg)

- W rekonstruiert aus transversaler Masse (Myon-p<sub>T</sub> & MET)
- QCD-BG im W-Kanal aus Daten (Matrix-Methode)
- Dominanter systematischer Fehler: Impulsskala (≈ 3%)

![](_page_45_Figure_7.jpeg)

![](_page_46_Picture_0.jpeg)

# **TOP PHYSICS**

### Paarproduktion: $\sigma$ = 830 pb in NLO ca. 1 Ereignis / s bei 10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>

### t Wb mit BR $\approx 100\%$ Topologie hängt vom W-Zerfall ab

- **bb qq qq** (46%) : Kinematik rekonstruierbar, aber hoher QCD-BG und Kombinatorik Nützlich zur Kalibration von b-tagging und Jet-Energieskala
- bb I qq (44%) : "Goldener Kanal" zur Massenbestimmung
- bb I I (10%) : sehr sauber, hohes S/B, aber keine direkte Massenbestimmung

![](_page_46_Figure_7.jpeg)

![](_page_47_Picture_0.jpeg)

![](_page_47_Figure_2.jpeg)

![](_page_48_Picture_0.jpeg)

### **HIGGS PHYSICS**

![](_page_48_Figure_2.jpeg)

![](_page_49_Picture_0.jpeg)

## **EXPLORING THE DARK UNIVERSE**

![](_page_49_Figure_2.jpeg)

![](_page_50_Picture_0.jpeg)

# **IV PLANNING THE FUTURE**

![](_page_50_Figure_2.jpeg)

![](_page_51_Picture_0.jpeg)

# CONCLUSION

- 25 Years after first plans of the Large Hadron Collider we are ready
- Accelerator and detectors are most complex systems built so far
- We acknowledge with gratitude the support by State and government. Funding agencies and administrations need extremely high endurance

### Our research offers:

- 1. Knowledge
- 2. Developments of new technologies
- 3. Teaching

![](_page_51_Picture_9.jpeg)

# We are looking forward to decades of exciting research

Highlights from the CMS Detector

Th. Müller, Institut für Experimentelle Kernphysik

![](_page_52_Picture_0.jpeg)

![](_page_52_Picture_1.jpeg)