

Latest Results from the Pierre Auger Cosmic Ray Observatory

Outline

- •Energy spectrum
- Composition
 - charged particles
 - neutrinos/photons
- Anisotropy

ISAPP summer school Karlsruhe 27 July 2009

Markus Roth Karlsruhe Institute of Technology

Cosmic rays at highest energies

Goal:

Understand the mechanism that produces UHECR particles

- What and where are the sources?
- How do they work?

We need to measure:

- direction
- energy
- particle-type

To determine

- Spectral features
 - knee
 - (second knee ??)
 - ankle
- Chemical composition
- Anisotropy

Galactic cosmic rays

Extragalactic cosmic rays? A guess

Accelerators for 10²⁰eV protons

Accelerators for 10²⁰eV protons

Astrophysical candidates

$$E_{\rm max} \propto Z \beta_s B L$$

Z: charge of the CRB: shock velocityB: magnetic field strengthL: size of the accel. region

Particle horizon / Greisen-Zatsepin-Kuzmin effect

Pre Auger data

Inconsistent with GZK ??

Consistent with GZK ??

The Pierre Auger Collaboration

- + Argentina
- ✦ Australia
- + Brasil
- ✦ Bolivia*
- Czech Republic
- + France
- Germany
- + Italy
- Mexico
- Netherlands
- + Poland
- Portugal

- Slovenia
- + Spain
- United Kingdom
- + USA
- ✦ Vietnam^{*}

- 300 PhD scientists from ~70 Institutions and 17 countries
 - *Associate Countries

The Pierre Auger Observatory

- Southern site: Hybrid detector near Malargüe/Argentina
- June 13th 2008 : 1660 tanks deployed 1637 with water 1603 totally equipped
- All 4 fluorescence buildings complete each with 6 telescopes since February 2007

The Pierre Auger Observatory

- Southern site: Hybrid detector near Malargüe/Argentina
- June 13th 2008 : 1660 tanks deployed 1637 with water 1603 totally equipped
- All 4 fluorescence buildings complete each with 6 telescopes since February 2007

Montag, 27. Juli 2009

The Southern Observatory

The Southern Observatory

A surface detector station

A surface detector station

A fluorescence telescope

A fluorescence telescope

The hybrid nature of Auger

The surface detector

The surface detector

The surface detector

- I600 Water Cherenkov tanks (I.2 m height, I0 m² area)
- 12,000 ltrs of purified Water
- Three 9" PMTs
- 40 MHz FADCs
- solar powered
- GPS based timing
- micro-wave communication

The fluorescence detector

The fluorescence detector

The hybrid era

	FD-mono	SD-only	FD+SD (Hybrid)	SD (Hyb calib)
Angular resolution	~3-5°	~I-2°	~0.5°	~I-2°
Aperture	dependent on detector MC and atmosph. cond.	purely geometric, A and model free	dependent on detector MC and atmosph. cond.	purely geometric, A and model free
Energy	approx.A and model free	A and model dependent	approx. A and model free	approx. A and model free
Duty cycle	~13%	~100%	~13%	100%
Experiment	Fly's Eye, HiRes I, Hires II	AGASA, Haverah Park	Auger	Auger

4-fold event

Energy spectrum

- Hybrid spectrum (FD & SD)
- Surface detector spectrum
- Auger spectrum (i.e. combined)
- (Horizontal EAS spectrum)

Hybrid spectrum

Geometrical reconstruction

Precise shower geometry from breaking degeneracy using SD timing

times, t_i, at angles χ_i , are key to finding R_p

$$t_i = t_0 + \frac{R_p}{c} \cdot \tan\left(\frac{\chi_0 - \chi_i}{2}\right)$$

Geometrical reconstruction

Precise shower geometry from breaking degeneracy using SD timing

times, t_i, at angles χ_i , are key to finding R_P

$$t_i = t_0 + \frac{R_p}{c} \cdot \tan\left(\frac{\chi_0 - \chi_i}{2}\right)$$

FD energy calibration

How to determine the hybrid spectrum

Aim: Flux measurement

$$J(E) = \frac{d^4 N}{dE \ dS \ d\Omega \ dt} \simeq \frac{1}{\Delta E} \frac{\Delta N(E)}{\mathcal{E}(E)}$$

Event selection of high quality events:

- Geometrical reconstruction
 - Zenith < 60°
 - Station within 1500m from shower axis
 - Energy dependent distance between core and FD site (Astropart. Phys. 27, 2007)
 - Energy dependent filed of view (Unger, ICRC Merida 2007)
- Profile reconstruction
 - Gaisser-Hillas fit with χ^2 /ndof <2.5
 - $\bullet X_{max}$ contained in the observed depth range
 - Cherenkov light < 50%
- σ(E)<20%

- Atmospheric conditions
 - Measurement of atmospheric parameters available
- Cloud coverage from Lidar measurements
 < 25%

Hybrid spectrum

Montag, 27. Juli 2009

SD-array spectrum (<60°)

4-fold event (SD part)

Detector signal at 1000 m from shower core

- S(1000)
- determined for each surface detector event

S(1000) ~ E

Energy calibration with the fluorescence detector

Energy uncertainty from calibration curve:

- 7% at 10 EeV
- 15% at 100 EeV

Improves with increased hybrid statistics

$$\begin{split} a &= (1.51 \pm 0.06(stat) \pm 0.12(syst)) \times \ 10^{17} \, \mathrm{eV}, \\ b &= 1.07 \pm 0.01(stat) \pm 0.04(syst), \end{split}$$

Note:

Both S_{38°} and E_{SD} are determined experimentally. We do not rely on shower simulation.

Energy calibration with the fluorescence detector

Energy uncertainty from calibration curve:

- 7% at 10 EeV
- 15% at 100 EeV

Improves with increased hybrid statistics

Note:

Both S_{38°} and E_{SD} are determined experimentally. We do not rely on shower simulation.

Energy determination with FD

Source	Systematic uncertainty	Comment
Fluorescence yield	14%	Nagano + AIRFLY
P,T and humidity effects on yield	7%	
Calibration	9.5%	Calib. source, laser
Atmosphere	4%	,
Reconstruction	10%	Optical spot, Lat. Ch. dist.
Invisible energy	4%	Model dependence
Total	22%	

FD energy: statistical uncertainty <6% determined with

- detector simulation
- validated by stereo events

FD energy: systematic uncertainty ~22%

Ikm

1019

35,250 SD events with E > 3 · 10¹⁸ eV

Corrected for energy resolution by a forward folding procedure

- energy dependent
- •less than 20% over the full range

Update of PRL 101, 061101 (2008)

Syst. uncertainty on flux <4%

With a cosmological evolution of the source luminosity of $(z+1)^m$

Elemental composition - Charged particles

FD: Longitudinal Shower Profiles

Average shower maximum X_{max}

Primary protons:

 $\langle X_{max} \rangle = D_{10} \lg(E) + const$

Superposition model:

 $\langle X_{max} \rangle = D_{10} \lg(E/A) + const$

Shower to shower fluctuations

Primary protons:

 $RMS(X_{max})^2 = \lambda_p + V(shower)$

Superposition model ...

 $RMS(A) = RMS(p)/\sqrt{A}$

... does not work here (fragmentation), but qualitatively

 $RMS(A_1) < RMS(A_2)$

for $A_1 > A_2$

FD results

 $\langle X_{max} \rangle \, \, and \, RMS \, vs \, E$

Broken line fit: Slopes D [g/cm²/decade]

Elemental composition - Neutrinos

&

Detection

A vertical shower

A vertical shower

İü

«Young» vs «old» showers

Neutrinos vs hadronic showers

Only a neutrino can induce a young horizontal shower

Neutrino signatures

Neutrino flux limits

Photon flux limit

Anisotropy

Angular resolution

Angular accuracy depends on station multiplicity

9 stations $\sim 10^{19} \text{ eV}$

Search for large scale anisotropy at EeV energies

Are EeV CRs of galactic or extra-galactic origin?

2 possible scenarios

- Transition occuring at the ankle: amplitude of dipol pattern steadily increasing with energy up to the ankle (very model-dependent)
- Transition at lower energy: relative motion of the observer wrt the frame of the sources influences the large scale distribution of CRs

Measuring the large scale anisotropy vs energy is one of the main tools for discriminating between the 2 scenarios

Upper limit

Anisotropy at highest energies

Take CR source candidates from some catalog, e.g. VCV (Veron-Cetty and Veron)

Define probability to find a single event of an isotropic distr. within a certain opening angle from a source: $p = p(\psi, n_{sources}) = p(\psi, z_{max})$ Exploratory scan < 26 May 2006: Angular Scan

Scan
$$P = \sum_{j=k}^{N} {N \choose j} p^j (1-p)^{N-j}$$

Redshift Scan Energy Scan 0.0 0.01 0.0 0.001 0.001 Probability C.0001 0.000 0.0001 1e-05 1e-05 1e-05 1e-06 1e-06 1e-06 1e-07 1e-07 1e-0) 1e-08 1e-08 1e-08 1e-09 1e-09 1e-09 12345678 0 0.005 0.01 0.015 0.02 40 50 60 70 80 90 100 Maximum angular distance (deg) Maximum AGN redshift Energy flueshold (EeV)

for 3 free parameters

- z_{max} : Number of sources
- Ψ: Allowed angular separation
- E_{Thr}: Energy threshold

Minimum of P, i.e. largest deviation from isotropy found for $z_{max} = 0.018 (d_{max} = 75 \text{ Mpc})$ $\Psi = 3.1^{\circ}$

Result: 12 among 15 measured events correlate with at least one source 3.2 expected if flux was isotropic (p=0.21) and exposure was accounted for

 $E_{Thr} = 56 \text{ EeV}$

Running prescription (27.5.06- ...)

Verify a posteriori result by applying these correlation parameters to new data instead of using penalty factors to account for # of searches

Goal: confirm results from exploratory scan by new data set (a priory search)

The correlation plot

Current status

17/44 events in correlation (P=0.006)

p=17/44=0.38 more than 2 s.d. from isotropy

The degree of correlation has decreased, but still provides evidence for anisotropy of UHECRs >55 EeV at > 99% C.L.

Table of Results with full data set

Period	Exposure	GP	N	k	$k_{ m iso}$	P
I 4	4390	unmasked	14	9	2.9	
	4390	masked	10	8	2.5	
II 4500	4500	unmasked	13	9	2.7	2×10^{-4}
	4500	masked	11	9	2.8	1×10^{-4}
III 81	8150	unmasked	31	8	6.5	0.33
	8150	masked	24	8	6.0	0.22
II+III 12650	12650	unmasked	44	17	9.2	$6 imes 10^{-3}$
	masked	35	17	8.8	2×10^{-3}	
I+II 8	8890	unmasked	27	18	5.7	
	0090	masked	21	17	5.3	
I+II+III	17040	unmasked	58	26	12.2	
		masked	45	25	11.3	

Anisotropy searches

Summary and outlook

- Spectrum measurement is fundamental to solve the UHECR puzzle, but in addition
- Deducing the mass is crucial incl. photons and neutrinos
 - p/Fe at highest energy? Neutrinos and photons?
 - Composition around 10¹⁸ eV will sheet light on the origin too:
 Extensions of the southern site;
 - HEAT (3 FD telescopes; elevation of 30-60°)
 - AMIGA; Muon counting,
- Anisotropy may ultimately pin point the sources We need more statistics

Northern Observatory in Colorado/USA

- 20,000 square kilometer
- ~40 FD telescopes
- > 4000 SD stations
- SD energy threshold of > 10^{19} eV

70

END

72

Hillas model

Bereszinsky model

Uncertainty of S(1000)

Precision of S(1000) improves as energy increases

